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ABSTRACT

The Downingia yina species complex (Campanulaceae), centered in northern California and
southern Oregon, currently contains three morphologically distinguished species: D. yina, D. elegans,
and D. bacigalupii. This complex of species is notable for high levels of morphological and cytological
variation, with chromosome counts of n = 6, 8, 10, and 12. Molecular evidence suggests three main
clades within this complex, corresponding more with cytological variation than with morphological
variation. Additionally, the molecular evidence suggests a phylogeographic pattern associated with the
Cascade Ranges, where members of the clade characterized by chromosome counts of # = 6, 8, and 10
are distributed primarily to the west of the Cascades while members of the clade characterized by
chromosome counts of 7 = 12 are distributed primarily to the east. A third clade characterized by n =
10 is localized in the Lake of the Woods region of southern Oregon. Evidence from morphological,
cytological, interfertility, and molecular data was used to re-examine the delimitation of species within
this complex. Downingia elegans and D. bacigalupii are maintained, while D. yina is split into three
morphologically cryptic species (D. yina, D. willamettensis, D. pulcherrima) that do not form a clade.

Key Words: Campanulaceae, chromosome races, cryptic species, Downingia, phylogeography.

The Downingia yina species complex 1s a
monophyletic group (Schultheis 2001) comprising
D. yina Applegate, D. bacigalupii Weiler, and D.
elegans (Lindl.) Torr. The species complex
represents a cytologically and morphologically
variable group centered in northern California
and southern Oregon. Chromosome numbers
within the complex include » = 12 in D.
bacigalupii, n = 10 in D. elegans, and races of n
=6, 8,10 and 12 in D. yina (Weiler 1962; Foster
1972; Lammers 1993). Morphologically, both D.
bacigalupii and D. elegans are distinguished from
D. yina by an exserted staminal column with a
sharp bend between the anthers and filament, and
by the concave oval-shaped lower corolla lip with
relatively parallel corolla lobes. Downingia baci-
galupii can be distinguished from D. elegans by
the corolla’s lighter shade of purple and by the
yellow pigmentation in the corolla throat, a
feature also found in D. yina.

Morphological variation within D. yina has led
some workers to recognize additional species or
infraspecific taxa. Downingia yina was described
by Applegate (1929) from a localized region of
the southern Cascade Ranges in Klamath Co.,
Oregon. Shortly thereafter, Peck (1934, 1937)
described two additional larger flowered species:
D. willamettensis Peck from the Willamette
Valley of Oregon, and D. pulcherrima Peck from
eastern Oregon. In the first monograph of the
genus, McVaugh (1941) recognized D. yina and
D. willamettensis, including D. pulclierrima in the
latter. McVaugh noted (1941), however, that D.
vina and D. willanettensis were not readily
distinguishable, and ultimately treated them as

varieties within D. yina, var. yina and var. major
McVaugh, respectively (McVaugh 1943). He
distinguished the two varieties based on fruit
characteristics (fusiform with hyaline lines in var..
yina; subulate without hyaline lines in var. major),
plant stature (larger and more erect in var.
major), and geographic location of the popula-
tions. Weiler (1962) found that the differences
described between D. yina and D. willamettensis
were not maintained under greenhouse condi-
tions. He accordingly recognized only D. yina
with no infraspecific taxa, although noting that
fresh material of D. pulcherrima was not exam-
ined. Weiler (1962) also noted that individuals of
D. yina sensu lato tended to be decumbent to the
west of the Cascade Ranges, and erect to the east.
Foster (1972) was unable to find consistent
morphological differences to correspond with
cytological races in D. yina, but did note an
ecological trend. She observed that D. yina
chromosome races n = 6, 8, and 10 are found
in habitats characterized by Kiichler (1964) as
Oregon-oak woodland or cedar-hemlock-Doug-
las fir mosaic while the D. yina chromosome race
n = 12 is found in California mixed evergreen
forest and juniper-steppe woodland, as charac-
terized by Kiichler (1964). Both Foster (1972)
and Ayers (1993) followed Weiler (1962) in
recognizing only D. yina.

The present study emerged largely from a
systematic investigation of the genus Downingia,
in which molecular data unexpectedly suggested
the existence of morphologically cryptic lineages
within D. yina (Schultheis 2001), corresponding
in part to infraspecific taxa previously recog-
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FIG. 1. Map of the northwestern USA showing localities of samples included in this study. Each symbol may

represent one or multiple samples from the vicinity. The dashed line roughly corresponds to the geographic barrier

created by the Cascade Range. Triangles

Downingia elegans. Squares

D. bacigalupii. Circles = samples

previously included in D. yina. Filled circles = now assigned to D. willainettensis. Open circles = now assigned to D.
pulcherrima. Circles with line through center = now assigned to D. yina sensu strictu. Clade 1, Clade 1I and Clade

III refer to clades identified in phylogenetic analyses.

nized. The situation was further complicated
(Schultheis 2001) by the apparent para- or
polyphyly of D. yina with respect to D. elegans
and D. bacigalupii. The D. yina species complex
thus represents a mixture of morphologically
cryptic and morphologically distinctive lineages
that may not correspond to the species currently
recognized (Ayers 1993). The aim of this study
was to further investigate the relationships and
circumscriptions of D. bacigalupii, D. elegans and
D. yina using morphological data, additional
nuclear and chloroplast molecular sequence data
to supplement Schultheis (2001), and available

cytological and interfertility data (Weiler 1962;
Foster 1972).

METHODS
Taxon Sampling

Collections were made from throughout the
range of D. elegans, D. bacigalupii, and D. yina
(Appendix 1; Fig. 1). Herbarium collections
provided important supplemental material.
Downingia bicornuta A.Gray, D. concolor E.
Greene, D. cuspidata (E. Greene) Rattan, D.
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CHARACTERS USED IN MORPHOLOGICAL ANALYSES OF THE DOWINGIA YINA COMPLEX. Characters 1—

10 are quantitative and measured in millimeters, characters 11-14 are qualitative, and characters 15-19 are ratios.
! Characters used in cladistic analyses, with character states noted in brackets.

Character
number Character Character definition and how assessed
l. sepal dorsal sepal, length
2. back slit corolla base to dorsal slit, length; equivalent to height of corolla tube along
dorsal surface
side slit corolla base to lateral slit, length; equivalent to height of corolla tube along
lateral surface
4. upper lobe upper corolla lobes, length
5. lower lobe lower corolla lip, length
6. filament' filament tube, length (<6 mm [0], >6 mm [1])
7. anther anther tube, length
8. anther angle’ angle between anther and filament tubes (<50 [0], >70 [1])
9. lower angle angle of divergence between lobes of the lower corolla lip
10. horns' anther horns, length (<0.62 mm [0}, >0.62 mm [1]); refers to triangular

projections on each of the two smaller anthers

11. anther back

12. upper lobe orientation
13. yellow!

14. lower lobe shape

15. filament/anther

16. sideslit/backslit’

17. filament/backslit'
18. upper/lower lobe
19. backslit/upper lobe

trichomes on anther dorsal surface: abundant (0), few (1), none (2)

upper corolla lobes, orientation: parallel (0), intermediate (1), divergent (2)
yellow on lower corolla lobe: present (0), absent (1)

lower corolla lobe, shape: acute (0), intermediate (1), mucronate (2)

filament length/Anther length

length of lateral slit/Length of dorsal slit (=0.6 [0], <0.6 [1])
filament length/Length of dorsal slit (=1 [0], 1-2 [1], >2 [2])
upper lobes length/Lower lip length

length of dorsal slit/Upper lobes length

montana (E. Greene) Rattan, and D. ornatissima
E. Greene were chosen as outgroup taxa based on

previous phylogenetic analyses within the genus
(Schultheis 2001).

Molecular

Generation of sequence data. Extraction of total
DNA from 24 samples first reported in Schultheis
(2001) and 9 new samples (Appendix 1) involved
use of either the CTAB protocol of Doyle and
Doyle (1987) or Hillis et al. (1996) with minor
modifications (Schultheis 2001), or use of Qiagen
DNeasy Plant mini kits following manufacturer’s
instructions. Most plant tissue samples were
stored in a cooler while in the field and transferred
to a —80C freezer within one week of collection.
Voucher specimens were either the same plant
from which tissue for DNA extraction was taken,
or were other plants from the same site.

Sequence data were generated from the nuclear
185-26S rDNA internal transcribed spacer (ITS) and
the chloroplast 3'#7nK intron. Amplification and
sequencing methods changed during the course of
the project, as new techniques became available.
Single-stranded DNAs of ITS I and ITS 2 were
generated, purified, and manually sequenced
following Baldwin (1992). Double-stranded
DNAs of ITS 1, ITS 2 and the 3'#rnK intron were
generated, purified, and sequenced using automat-
ed sequencing technology following Schultheis
(2001). Sequences are deposited in Genbank.

Sequence alignment. All alignments were visual.
Sites coded with “?”” or with an [TUPAC-IUB
ambiguity code represent basepairs where se-
quence produced with neither primer produced a
sufficiently strong or clear signal for confident
basepair assignment. Indels, coded as ‘-, were
treated as missing data. Two regions were
excluded from the ITS dataset due to ambiguous
sequence alignment (positions 132—138 and 284-

291 of the aligned ITS data set).

Evaluation of sequence data. Separate and
combined analyses using a parsimony criterion
were conducted for ITS and 3'#rnK intron data.
All analyses employed heuristic searches with
10,000 replicates of random sequence addition
and tree-bisection-reconnection (TBR) branch
swapping. Conservative estimates of clade sup-
port were assessed using 10,000 replicates of the
“fast” bootstrap option in PAUP 4.0b5. Decay
analyses (Donoghue et al. 1992; Bremer 1994)
using Autodecay (Eriksson 1998) were conducted
for the 3’trnK intron and the combined molec-
ular analyses.

Morphology

Fresh and/or herbarium material was exam-
ined from 80 localities (Appendix 1, Fig. 1) and
450 flowers. Nineteen characters were included
for phenetic analyses, including 10 quantitative, 4
qualitative, and 5 ratio characters (Table 1). All
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characters are floral, because vegetative charac-
ters are not generally useful for distinguishing
species of Downingia. Characters were observed
or measured against a ruler under a dissecting
scope, except for anther horn length which was
measured with an ocular micrometer.

Morplhometric analyses. Analyses of variance
were conducted to identify characters differing
significantly among the three currently recognized
species, and Tukey tests were used to identify
which species differed. The same was done within
D. yina for the three groups identified by
molecular analyses (see results). For multivariate
analyses, a data matrix was created containing the
average value for each character from each
collection locality. Multivariate analyses included
cluster analysis using Euclidean distances and
single linkage, discriminant function analysis, and
Principal Components Analysis (PCA), the latter
using a matrix standardized so that each character
had a mean of zero and a standard deviation of
one. All statistical analyses were performed with
SYSTAT 5.2.1.

Cladistic analyses. One qualitative and five
quantitative characters (indicated in Table 1) were
used in a cladistic analysis of the 26 populations
for which molecular data were also available, plus
one population per outgroup taxon. Phylogenetic
analyses using a parsimony criterion were con-
ducted with PAUP 3.1.1 (Swofford 1993) or
PAUP *4.0b5. The analysis employed a heuristic
scarch with 100 replicates of random taxon
addition and TBR branch-swapping. Qualitative
characters excluded from the analysis were poly-
morphic within most populations. Character
states for the quantitative characters were deter-
mined by searching for gaps within the character
distribution among specimens that were greater
than 2 times the average population standard
deviation (Archie 1985). Most quantitative char-
acters were excluded from the cladistic analysis
because no character states could be defined. The
character ‘“‘locule”, referring to the number of
locules in the ovary, separates the D. yina complex
from the outgroup taxa. The morphological data
matrix is provided in Table 2.

Cytology

Chromosome counts were obtained from
unpublished theses (Weiler 1962; Foster 1972)
and from numerous specimens deposited at the
UC and JEPS herbaria as chromosome vouchers
(Appendix 1). Chromosome number was treated
as an ordered character. All known chromosome
counts for D. bacigalupii, D. elegans, D. bicor-
nuta, D. cuspidata, D. ornatissima and D.
montana report a single number for each of the
species (Wood 1961; Foster 1972; Weiler 1962;
Lammers 1993). All samples of these taxa were
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scored based on chromosome counts reported for
the species, regardless of whether a count was
obtained from the population sampled here. The
only exception i1s D. bacigalupii sample 585-99,
which was scored as unknown since the popula-
tion is at the limits of the species range, and no
chromosome counts were available from the
vicinity. Chromosome counts for D. concolor
are 1 = 8 and n = 9 (Weiler 1962; Lammers
1993). The samples of D. concolor included here
fall within the known geographic range of 7 = 9
reports for D. concolor (Weiler 1962), and were
scored as such. Populations of D. yina were
scored based on the geographic proximity of the
population to a population with a documented
chromosome number (indicated in Table 2;
Weiler 1962; Foster 1972). MacClade version
3.0 (Maddison and Maddison 1992) was used to
reconstruct the most parsimonious chromosome
numbers characterizing cach node on trees
produced from the combined analysis of the
ITS and 3'#rnK datasets.

Analyses of Combined Molecular,
Morphological, and Cytological Data

A partition-homogeneity test (Farris et al.
1995) performed in PAUP *4.0 (Swofford 2001)
confirmed combinability of the ITS plus 3'#ruK
data (P = 0.247; 1000 replicates, heuristic
searches with random addition and TBR branch
swapping), and of the molecular data with the
morphological and cytological data (P = 0.094).
Morphological and cytological data were com-
bined as a single partition for the test since
cytological data consisted of only one character
(chromosome number). A branch and bound
scarch of the combined data was conducted
under a parsimony criterion. Clade support was
assessed using 10,000 replicates of the “fast™
bootstrap option. The morphological data came
from the same or neighboring populations as the
sequence data (Table 2). The cytological data
consisted of chromosome numbers and did not
include information regarding meiotic configura-
tions of chromosomes in hybrid plants.

Interfertility

Information regarding interfertility and cross-
ability among members of the D. yina complex
comes from Weiler’s unpublished thesis (1962), in
which he documented the results of numerous
interspecific crosses within Downingia. His data
include qualitative assessments of seed set,
germination, and hybrid condition (e.g., flower-
ing, green, chlorotic, dying in secedling stage),
some quantitative assessments of pollen stain-
ability, and analysis of meiotic configurations.

Information regarding interfertility and cross-
ability within D. yina comes from Foster’s
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MORPHOLOGICAL DATA MATRIX USED FOR CLADISTIC ANALYSES. Sample numbers correspond to

Appendix 1, with the following prefixes: B = Downingia bacigalupii, E = D. elegans, Y = D. yina, M = D. montana,
C = D. concolor, O = D. ornatissima, Bl = D. bicornuta, CU = D. cuspidata. Characters and states are listed in
Table 1. The “locule” character refers to the number of locules in the ovary [bilocular (0), unilocular (1)]. For D.
vina the “‘chromosome™ character refers to the chromosome number based on reports or vouchers from the same or
a neighboring population, indicated in parentheses. This character was included in the analyses of all data
combined, but was not included in the analysis of morphological data alone. For some samples, the morphological
data were combined with the molecular data from a neighboring population, indicated in parentheses.

Character
Sample 8 10 13 16 17 Locule Chromosome
B Schultheis 585-99 1 1/0 0 1 ?
B Sclniltheis 240-95 1/0 1/0 0 1 12
B Schultheis 237-95 0 0 1/2 12
B Sclultheis 231-95 1/0 0 1 12
B Schultheis 251-95 0 1/0 1/2 12
E Sclhultheis 243-95 1 10
E Schultheis 242-95 1/0 10

E Schultheis 320-96

E Weiler 60138 (Foster 70-15-4)
Y Oswald & Ahart 3943

Y Schultheis 247-95

Y Tracy 3217

Y. T. Obrien s.n.

Y Sc/nitheis 236-95

Y D. Barbe 348

Y Schultheis 241-95

Y Schultheis 584-99

Y Schultheis 245-95

Y Weiler 61449

Y Schultheis 581-99

Y R. Bacigahipi 7978

Y Cook 962

Y Peck 16291 (Foster 68-210)
Y Schultheis 319-95

Y Weiler 61333 (Foster 68-51)
Y R. Bacigalupi 7894

BI Schultheis 100-95

C Schultheis 195-95

M Schultheis 235-95

CU Schultheis 179-95 (197-95)
O Schultheis 180-95
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unpublished thesis (1972). She documents meiotic
configurations and pollen stainability for crosses
between individuals of the same and different
chromosome races. 1 assigned each of Foster’s
parent populations to a molecular clade, based
cither on sequence data from her voucher
specimens, or on close proximity of the vouch-
ered population to a population with sequence
data. I applied an ANOVA to Foster’s raw pollen
stainability data to examine whether there were
significant decreases in stainability in hybrids
between versus within chromosome races, and
between versus within molecular clades.

RESULTS

Cladistic Analyses

Levels of divergence for the ITS dataset ranged
from 0.0 to 0.017, excluding outgroups. Analysis

of ITS data resulted in 104 minimum-length trees
based on 43 parsimony-informative characters
(length = 100; CI = 0.90, 0.83 without uninfor-
mative characters; RI = 0.91). Levels of diver-
gence for the 3'#rnK dataset ranged from 0.0 to
0.027, excluding outgroups. Analysis of the
3'trnK dataset resulted in 42 trees based on 19
parsimony-informative characters (length = 67;
CI = 0.94, 0.83 without uninformative charac-
ters; RI = 0.89). Combined molecular analyses
produced 2 trees based on 43 parsimony-infor-
mative characters (length = 158; CI = 0.91, 0.77
without uninformative characters; RI = 0.89).
Combined molecular, morphological and cyto-
logical analyses produced 72 trees based on 50
parsimony-informative characters (length = 176;
C.I. = 0.87, 0.72 without uninformative charac-
ters; RI = 0.80).

All analyses (ITS dataset; 3'frnK dataset;
combined molecular datasets; combined molecu-
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The strict consensus of 104 minimum-length ITS parsimony trees (length = 100; C.I. = 0.90, 0.83 w/o

uninformative characters; R.I. = 0.91) produced from a heuristic scarch with 10,000 replicates of random taxon
addition and TBR branch swapping. Numbers above the branches indicate bootstrap values generated from 10,000
replicates of the ““fast” bootstrap method. Sample collection numbers correspond to Appendix 1. If only a number
is indicated, the collection was by Schultheis. Chromosome counts are uniform for all species except Downingia
yina. Sources for D. yina chromosome counts are indicated in Table 2.

lar, morphological and cytological datasets)
except that of morphological data alone resulted
in three main clades or grades (Figs. 2-5). Clade |
comprised D. elegans and D. yina pro parte.
Clade Il comprised D. yina pro parte. Clade I11
comprised D. bacigalupii and D. yina pro parte.
Primary differences among the trees produced
from different analyses were the following: (1)
There was a sister relationship between Clades |
and II in trees resulting from analyses of all
datasets but the ITS dataset, in which Clade II is
aligned with grade III (Fig. 2). (2) Downingia

elegans sample Foster 70-15-4 was resolved as
part of Clade I in all trees except those resulting
from analysis of the 3'rrnK dataset, in which it
fell in an unresolved position between Clades |
and II (Fig. 3). This sample is from Snow
Mountain, in Lake Co., California, at the
southern limit of the species range (Fig. 1). (3)
Downingia bacigalupii sample 585-99 is aligned
with Clade I in ITS trees (Fig. 2), but is sister to
other members of Clade IIT in all other trees.
Sample 585-99 is from Josephine Co., Oregon, at
the western periphery of the species range
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F1G. 3. The strict consensus of 42 minimum-length 3'7/uzK intron trees (length = 67; C.I. = 0.94, 0.83 w/o
uninformative characters; R.I. = 0.89) produced from a heuristic search with 10,000 replicates of random taxon

addition and TBR branch swapping. Numbers above the branches indicate bootstrap values generated from 10,000
replicates of the “‘fast” bootstrap method. Numbers below the branches are decay indices. Sample collection
numbers correspond to Appendix 1. If only a number is indicated, the collection was by Schultheis. Chromosome
counts are uniform for all species except Downingia yina. Sources for D. yina chromosome counts are indicated in

Table 2.

(Fig. 1). (4) When morphological and cytological
data are combined with molecular data, the
resulting trees resolve samples of D. elegans and
of D. bacigalupii as clades within Clade 1 and
Clade II1 respectively (Fig. 5). Downingia baciga-
lupii sample 585-99, however, is resolved as sister
to Clade III, and D. elegans sample Foster 70-15-
4 is unresolved within Clade I.

The strict consensus of 2556 trees based on six
parsimony-informative characters (length = 9,
C.I. = 0.67, RI = 0.88) produced by the cladistic

analysis of only the morphological data showed
no resolution (figure not shown).

Morphometric Analyses

Dovwningia yina complex. Univariate analyses
within the D. yina complex showed that the three
currently recognized species were significantly
different from one another for numerous charac-
ters, although ranges overlapped for all charac-
ters (Table 3). Anther angle and the angle of



2010] SCHULTHEIS: CRYPTIC SPECIES IN DOWNINGIA YINA 27
=12 D bacigalupii 24095
=12 D bacigalupii 251-95
=12 1 pacigalupii 237-95
8;) — 1712 D yina 31995 =
~ 63 o
1 n=12 : 3
"= D. yina 236-95 =
o
726 =] D, Yina T. Obrien sn
=12 D) yina 241-95
=7 . ..
—— D. bacigalupii 585-99
98
5 - .
eaeelZl0 D, yinr 581-99 —
(]
"~ D. yina R. Bacigalupi 7978 S
217 =10 D). elegans Foster 70-15-4
— 1710 D elegans 24295
67
1 _ —
=10 1) elegans 243-95 9
9 i =10 1 elegans 320-96
L =10 D yina 247-95
L =10 Yyina Foster 68-51
— =1L Dy montana 23595
1 —
L u=9 D, concolor 19595 §
o
=12 T 50
& D. ornatissima 180-95 E
o
— =1L D picornuta 100-95
L=l D cuspidata 197-95
FiG. 4. The strict consensus of two minimum-length trees (length = 158; C.I. = 091, 0.77 w/o uninformative

characters; R.I. = 0.89) from a heuristic search of combined ITS and 3'7#K intron data, with 10,000 replicates of
random taxon addition and TBR branch swapping. Numbers above the branches indicate bootstrap values
generated from 10,000 replicates of the ““fast” bootstrap method. Numbers below the branches are decay indices.
Sample collection numbers correspond to Appendix 1. If only a number is indicated, the collection was by
Schultheis. Chromosome counts are uniform for all species except Downingia yina. Sources for D. yina chromosome

counts are indicated in Table 2.

divergence between lobes of the lower corolla lip
in particular distinguished D. elegans and D.
bacigalupii from D. yina. The former two taxa
had more sharply bent anthers and less divergent
lower corolla lobes than D. yina. The filament of
D. bacigalupii was longer on average than that of
D. elegans and D. yina. Additionally, D. elegans
could be distinguished by the lack of yellow
pigmentation on the lower corolla lip.

PCA analyses of all samples using all data
showed clear separation among D. elegans, D.

bacigalupii, and D. yina, particularly when
principal components I and III were plotted
(Fig. 6). This separation was also clear when only
ratio characters were used or when ratio charac-
ters were excluded. Characters of particular
importance in the PCA analyses were the anther
angle, the filament/back slit ratio, and the angle
of divergence between the lower corolla lobes.
The percent of total variance explained by
components I, II, and HI was 45.2%., 17.5%,
and 12.0%, respectively.
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Cluster analysis (not shown) produced two
main groups, one with D. yina samples and the
other with a mixture of D. elegaus and D.
bacigalupii samples. One sample of D. elegans
(Elilers & Erlanson 39) and one sample of D.
bacigalupii (582-99) together joined at the base of
the D. yiua cluster.

Variation witlhin Downiugia vina. Univariate
analyses revealed that significant character dif-
ferences were evident between D. yina samples
from the three main molecular clades, but with
overlapping ranges (Table 4). No qualitative
characters could be used to uniquely identify
the three groups. In general, Clade II samples
tended to be smaller for most quantitative
characters measured (Table 4). Samples from

Clade I tended to have a less sharply bent anther
and a wider angle of divergence between the lobes
of the lower corolla lip than did samples from
Clades II and 111.

PCA analyses of only D. yina samples using all
data did not clearly distinguish between samples
from Clades I, 11, and 1II (not shown). Discrim-
inant function analysis of D. yina samples showed
better separation of the three groups, but with
arcas of overlap (Fig. 7). Characters of particular
importance in the discriminant function analyses
were anther length, the angle of divergence
between the lobes of the lower corolla lip, and
trichome density on the dorsal anther surface.

Cluster analysis (not shown) grouped all of the D.
yina samples together, but did not resolve groups
corresponding to Clade 1, II, and III samples.
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UNIVARIATE STATISTICS FOR THE DOWNINGIA YINA COMPLEX. Means, standard deviations and ranges

(in parentheses) are provided for each character within each species. Superscripts indicate groups that are
significantly different from one another using Tukey multiple comparison tests following ANOVA. Groups with no
superscript or that share a superscript are not significantly different.

D. elegans D. yina D. bacigalupii
Character (n = 62) (n = 317) (n = 69)

Sepal (mm) 5.31 = 1.30* (3.0-8.0) 4.75 = 1.28% (0.50-10.0) 5.81 = 1.80* (3.0-10.0)
Side slit (mm) 2.33 = 0.45* (1.5-3.0) 4.10 £ 0.71® (1.75-6.0) 2.96 = 0.54¢ (2.0-4.25)
Back slit (imm) 4.48 = 0.75* (3.0-6.0) 4.80 = 0.89" (2.25-7.5) 3.87 £ 0.91¢ (2.25-6.0)
Upper lobe (mm) 4.04 = 1.16* (2.0-7.0) 3.71 = 0.93* (2.0-6.75) 6.75 = 1.35% (4.0-11.0)
Lower lobe (mm) 6.53 = 1.82* (3.5-12.0) 6.18 = 1.30" (3.0-9.5) 8.40 = 1.80" (5.0-14.0)
Filament (mm) 5.27 + 1.48* (2.5-7.5) 3.17 = 0.92® (1.25-5.75) 7.48 = 1.50¢ (3.25-9.75)
Anther (mm) 2.68 £ 0.46" (1.5-3.5) 2.18 = 0.36" (1.25-3.0) 2.89 *£ 0.42¢ (1.25-3.75)
Anther angle (degrees) 84.07 £ 14.40* (28.0-90.0) 22.18 = 9.11"° (0.0-51.0) 88.80 £ 6.75% (38.0-90.0)
Lower angle (degrees) 9.16 = 11.92* (0.0-50.0)  53.69 = 12.79" (20.0-90.0) 12.31 £ 9.88" (0.0-30.0)
Horns (mm) 0.44 = 0.08* (0.26-0.75) 0.41 = 0.11* (0.13-0.79) 0.60 = 0.10" (0.32-0.80)
Filament/anther 1.95 = 0.34* (1.2-2.55) 1.45 = 0.30" (0.625-2.375) 2.58 = 0.35° (1.6-3.6)
Side slit/back slit 0.53 = 0.10" (0.35-1.0) 0.86 = 0.09” (0.47-1.3) 0.79 = 0.13° (0.5-1.11)
Filament/back slit 1.18 = 0.23% (0.56-1.75) 0.66 = 0.18" (0.38-2.0) 1.97 = 0.36° (1.42-3.56)
Upper lobe/lower lobe 0.64 = 0.15* (0.25-1.0) 0.61 = 0.14" (0.31-1.28) 0.81 = 0.14% (0.54-1.14)
Back slit/upper lobe 1.19 = 0.35* (0.6-2.22) 1.37 = 0.41® (0.5-3.11) 0.59 = 0.18¢ (0.35-1.14)

Cytology

Chromosome numbers within the Downingia
yvina complex appear to correspond to the
molecular clades identified with I'TS and 3'#nK
sequences (Figs. 2-4, Appendix 1). All samples 1n
molecular Clade I for which chromosome counts
were available were n = 10 in D. elegans and n =
6, 8 or 10 in D. yina. Downingia yina counts of n
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F1G. 6. Plot of principal components one and three

using the characters listed in Table 1. Filled symbols
represent Clade I. Symbols with a line through the
center represent Clade II. Open symbols represent
Clade I11. Triangles = Downingia elegans. Squares =
- D. bacigalupii. Circles = D. yina.

= 6 and n = 8 were documented from Marion
and Lane counties in Oregon, respectively (Weiler
1962; Foster 1972). All samples in molecular
Clade IT were D. yina with n = 10. All samples in
molecular Clade III were n = 12 in cither D. yina
or D. bacigalupii. Character state reconstruction
suggests an ancestral state of 7 = 10 in Clades |
and II, and an ancestral state of 7 = 12 1n Clade
III. The ancestral state for the entire D. yina
complex is equivocal.

Interfertility

Foster’s results (1972) show that within D.
vina, crosses between populations with different
chromosome numbers showed a significant re-
duction in pollen stainability relative to crosses
between populations with the same chromosome
numbers (Table 5; Foster 1972). Similarly, pollen
stainability was significantly reduced in crosses
between populations presumed to be from
different molecular clades relative to those
presumed to be from the same molecular clades
(Table 5; Foster 1972).

Weiler’s results (1962) from interspecific recip-
rocal crosses (Table 6) reflect Foster’s results
within D. yina in that pollen stamnability and
meiotic irregularities seemed to be atfected more
by differences in chromosome number than by
species identification (D. elegans, D. bacigalupii,
or D. yina). Crosses between D. elegans (n = 10)
and n = 10 populations of D. yina, for example,
produced 10 bivalents and no significant reduc-
tions in pollen stainability (Table 6), in contrast
to the reduction in pollen stainability for crosses
within D. yina but between populations of
different chromosome number (Table 5; Foster
1972).
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TABLE 4. UNIVARIATE STATISTICS WITHIN DOWNINGIA YINA. Means, standard deviations, and ranges (in
parentheses) are provided for each character within inferred molecular clades. Superscripts indicate groups that are
significantly different from one another using Tukey multiple comparison tests following ANOVA. Groups with no
superscript or that share a superscript are not significantly different.

Character Clade I (n = 100)

Clade II (n = 30) Clade III (n = 187)

Sepal (mm) 4.78 = 1.03%% (3.0-7.75)

Side slit (mm)

4.18 £ 0.63* (2.75-6.0)

4.22 * 0.96" (0.5-6.0)
3.40 = 0.49® (2.754.5)

4.82 = 1.42* (2.0-10.0)
4.17 £ 0.73* (1.75-6.0)

Back slit (mm) 4.86 = 0.78%(3.25-7.0) 3.74 = 0.53% (3.0-5.0) 494 = 0.88* (2.25-7.5)
Upper lobe (mm) 3.41 = 0.71® (2.0-5.75) 3.44 = 0.81% (2.0-5.0) 3.90 = 0.99% (2.0-6.75)
Lower lobe (mm) 6.00 = 0.96“ (3.25-8.5) 5.09 = 0.99® (3.25-6.75) 6.46 + 1.39% (3.0-9.5)
Filament (mm) 2.99 = 0.62¢ (2.0-4.75) 2.33 = 0.45% (1.75-3.5) 3.40 = 1.01" (1.25-5.75)
Anther (mm) 2.12 = 0.33¢ (1.25-2.75) 1.75 = 0.33% (1.25-2.25) 2.28 + 0.32% (1.25-3.0)
Anther angle (degrees) 18.72 = 8.10% (2.0-40.0) 22.50 = 6.114B (7.0-33.0) 23.96 = 9.52% (0.0-51.0)
Lower angle (degrees) 59.42 = 12.24B (35.0-90.0) 46.27 = 12.40" (20.0-68.0) 52.06 = 12.08* (22.0-78.0)
Horns (mm) 0.38 = 0.08" (0.19-0.61) 0.34 = 0.04® (0.26-0.42) 0.42 += 0.13* (0.13-0.77)
Filament/anther 1.42 = 0.23 (1.0-2.0) 1.37 = 0.30 (0.875-2.2) 1.48 = 0.34 (0.625-2.375)
Side slit/back slit 0.86 = 0.08* (0.62-1.07) 0.91 = 0.09% (0.77-1.25) 0.85 = 0.10* (0.47-1.31)
Filament/back slit 0.61 *= 0.08" (0.5-0.9) 0.62 = 0.08*® (0.47-0.75) 0.69 * 0.22* (0.38-2.0)
Upper lobe/lower lobe 0.58 *= 0.12¢ (0.33-0.9) 0.68 = 0.13" (0.45-0.92) 0.62 = 0.15* (0.31-1.3)
Back slit/upper lobe 1.50 *= 0.44% (0.78-3.11) 1.17 = 0.41* (0.60-2.22) 1.34 = 0.38* (0.50-2.5)
DISCUSSION from D. elegans. As outlined in the introduction,

The Downingia yina species complex currently
comprises three species that are readily distin-
guished from one another on the basis of
morphological characteristics (Weiler 1962; Ayers
1993; Fig. 6, Table 3). Downingia elegans and D.
bacigalupii differ from D. yina in that the anthers
form a sharp angle relative to the filaments, and
the lower corolla lobes are relatively parallel
versus divergent in D. yina. The chromosome
numbers and the yellow patches on the lower
corolla lobes readily distinguish D.bacigalupii
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F1G. 7. Plot of canonical factors one and two from

discriminant function analysis of Downingia yina
samples using the characters listed in Table 1. Filled
circles = Clade I. Circles with a line through the center
= Clade II. Open circles = Clade I11.

previous workers (Peck 1934, 1937; McVaugh
1941, 1943) recognized that D. yina may represent
multiple taxa, which were variously named: D.
vina Applegate, D. yina Applegate var. major
McVaugh, D. willamettensis Peck, D. pulcherrima
Peck. Recent molecular analyses lent merit to
these interpretations, but sampling within the D.
yina complex was very limited (Schultheis 2001).
The additional molecular data presented here
substantiates these patterns, and demonstrates
that samples of D. yina fall into three separate
molecular clades, with D. elegans and D. baciga-
lupii nested within two of these three clades
(Figs. 2-4). Taken independently, this paraphy-
letic or polyphyletic pattern with respect to the
sequence data from either the nuclear or chloro-
plast genomes (Figs. 2-4) might only represent
gene rather than organismal phylogenies (Doyle
1992; Knox 1998). High resolution molecular
data are expected to reveal patterns in which
paraphyletic progenitor species (with respect to
the molecular data) give rise to monophyletic
derivative species (Rieseberg and Brouillet 1994;
Graybeal 1995; Olmstead 1995), in this case D.

TABLE 5. MEAN PERCENT STAINABLE POLLEN IN
CROSSES BETWEEN
YIN4. Significant differences occur for populations
with the same versus different chromosome numbers
and for populations from the same versus different
molecular clades. (Raw data taken from Foster (1972)
and rcanalyzed).

Cross type Mean SE n P value
Chromosome numbers same 934 84 5 0.001
Chromosome numbers differ 499 56 11
Same molecular clade 83.0 83 7 0.007
Different molecular clades 483 7.3 9

POPULATIONS OF DOWNINGIA
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TABLE 6. MEAN PERCENT STAINABILITY AND
MEIOTIC CONFIGURATIONS IN INTERSPECIFIC
CROSSES WITHIN THE DOWNINGIA YINA COMPLEX.
Data taken from Weiler (1962).

D. elegans D. bacigalupii

D. elegans >95%
n =10

D. bacigalupii 30.8-78.3% >95%
n=12 Ich3 + 9IT + 11

D. yina 51.3-79.5% >95%
n=12 1211

D. yina >95% 50-70%
n =10 1011 Ich3 + 9IT + 11

yina independently giving rise to D. elegans and
D. bacigalupii. If D. yina populations were
integrated through gene flow with one another,
but to the exclusion of D. elegans and D.
bacigalupii, D. yina would eventually proceed to
monophyly with respect to the molecular data,
and the currently recognized species would be
appropriate, or could be accommodated with
terms indicating their unresolved or transitional
status (“‘metaspecies”, Donoghue 1985; “‘ferre-
species”’, Graybeal 1995; “‘plesiospecies’”, Olm-
stead 1995). What is compelling in this example is
the correspondence of gene geneologies from
more than one gene with geographic, cytological,
and interbreeding data; a correspondence that
makes a case for multiple organismal lineages
(Avise 1994), and thus multiple species (de
Queiroz 1998, 1999) within D. yina.

Geography

In the D. yina complex, cytological races and
molecular clades appear to be roughly segregated
along the Cascade Ranges (Fig. 1). When a
concordant pattern emerges between phylogenet-
ic and geographic subdivisions of a group, this
often indicates little to no gene flow among
subdivisions. This point has been emphasized in
phylogeographic studies (Avise et al. 1987) and
has received confirmation from population ge-
netic models (Slatkin 1989). The correspondence
between molecular clades within the D. yina
complex and the distribution of these clades to
either the west or east of the Cascade Ranges is
striking (Figs. 1-5), and suggests that the moun-
tain range serves as a geographic barrier to gene
flow. The Cascade Ranges have been recognized
as a geographic barrier in other contexts, clearly
affecting differences in climate (Peck 1941; Orr
and Orr 1996), and floristic composition (Peck
1941) to the west versus the east. The Klamath-
Siskiyou region at the California-Oregon border
is where the striking segregation of D. yina
molecular clades to the east and west of the
Cascade Ranges is much less evident (Fig. 1).
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Clade I i1s found to the west of the Cascade
Ranges, except that D. elegans extends eastward
into eastern Washington and Idaho. Clade II is
localized to a region in the Cascade Range of
southern Oregon (Fig. 1), in the vicinity of Lake
of the Woods and Upper Klamath Lake, Oregon.,
and cannot readily be designated as ‘‘east” or
“west”. Molecular clade III is primarily east of
the Cascades, but extends west into the Klamath-
Siskiyou region. It is possible that the Klamath-
Siskiyou region was the source from which the D.
yina complex dispersed northward to the east and
west of the Cascades, a scenario similar to
hypotheses of post-glaciation dispersal presented
by Whittaker (1961) and Soltis et al. (1997).

Cytology

Cytological variation within the D. yina
complex mirrors the molecular phylogeny and
the geography for the group, with n = 12 samples
primarily east of the Cascade Ranges, and 7 = 10
samples primarily to the west. Populations of D.
vina within Clade I have n = 6 or 8 in the
northwestern reaches of the species range, an
observation which prompted Foster (1972) to
suggest a trend of decreasing chromosome
numbers as one progressed from the southeast
to the northwest of D. ypina’s range. Foster’s
(1972) proposed explanation for this trend, based
on meiotic configurations in numerous hybrids
between the different chromosome races of D.
yina, was that the races arose through Robertso-
nian translocations producing either a dysploid
series of reductions from a starting point of n =
12, or a series of reductions from n = 11 with
an increase to n = 12. Foster’s work (1972)
unfortunately did not include D. elegans and D.
bacigalupii, perhaps because the potential deriva-
tion of these taxa from within D. yina was not
reflected in the taxonomy. If D. elegans and D.
bacigalupii arose from within D. yina, as suggest-
ed by the molecular data, the simplest explana-
tion is that they arose from n = 10 and n = 12
populations of D. yina, respectively. The homol-
ogy of D. elegans and n = 10 D. yina genomes,
and of D. bacigalupii and n = 12 genomes is
supported by interfertility data discussed below.

Interfertility

If D. yina contains the multiple divergent
lineages suggested by the molecular data, one
might expect levels of interfertility to correspond
with the molecular clades. Indeed, levels of
interfertility appear to correspond more with
the molecular clades and the chromosome
numbers of the populations examined than with
species identification. For example, individuals of
D. yina from Clade I show greater interfertility
with D. elegans than with individuals of D. yina
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from Clade III (Tables 6 and 7). Similarly,
individuals of D. yina from Clade IIl show
greater interfertility with D. bacigalupii than with
individuals of D. yina from Clades I or II. In sum,
patterns of interfertility do not appear to
correspond to the species currently recognized,
but do appear to correspond to chromosome
races and molecular data, both of which corre-
spond to gecography.

While levels of fertility may be reduced in
crosses between chromosome races or molecular
clades, reproductive barriers are not complete.
Nor are reproductive barriers complete among
the three species currently recognized. Popula-
tions exist with hybrids between D. bacigalupii
and D. yina, and between D. elegans and D. yina
(Weiler 1962; Schultheis personal observation).
These populations may either resemble a hybrid
swarm, with a wide variety of hybrid forms, or
may contain readily distinguishable parental
forms and only a few hybrids (Weiler 1962;
Schultheis personal observation). Regardless of
whether reproductive barriers are complete or
incomplete, the currently recognized species of
the D. yina complex do not correspond to
patterns of interfertility within the group.

Hypothesized Organismal Lineages Within the
Downingia yina Complex

In sum, there appear to be three main lincages
within the D. yina species complex. Members of
the first lineage (Clade 1) are characterized by
cither a “D. yina” or “*D. elegans” morphology,
and are distributed primarily west of the Cas-
cades, with D. elegans extending eastward into
eastern Washington and Idaho. “D. yina” indi-
viduals are n = 6, 8, or 10. “D. elegans”
individuals are n = 10. Within this lincage, the
“D. elegans” members form a clade, excluding
sample Foster 70-15-4, from the southern periph-
ery of the “D.elegans range. The scant support
for the “D. elegans™ clade comes from morpho-
logical characters, some of which are polymor-
phic within populations (Table 2).

The second hypothesized lincage (Clade 1I),
localized in the Lake of the Woods region of the
Cascades in southern Oregon, is characterized by
a *'D. yina” morphology and 7 = 10. Support for
this clade comes entirely from molecular charac-
ters.

Members of the third hypothesized lincage
(Clade III) are characterized by either a ““D. yina”
or ““D. bacigalupii” morphology, n = 12, and a
distribution primarily to the east of the Cascades,
into southwestern ldaho and western Nevada,
and extending westward into the Klamath/
Siskiyou region of southern Oregon and northern
California. Within this lincage, the ““D. bacigalu-
pii”’ samples form a clade to the exclusion of
sample 585-99, from the western periphery of the
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range. The “D. bacigalupii” clade is supported
only by morphological characters (Table 2).

Morphological analyses presented here were
unable to clearly distinguish among D. yina
samples falling into different molecular clades
(Fig. 7; Table 4), which largely correspond to
variation i D. yina chromosome numbers.
Similarly, Foster (1972) was unable to find
morphological differences corresponding to the
chromosome races within D. yina. The chromo-
some races and the molecular clades within D.
vina are morphologically cryptic. Further exam-
ination of morphology may reveal differences
missed thus far, but even in the absence of such
differences, it is desirable to recognize what are
hypothesized to be organismal lincages.

Based on the information currently available, 1
choose to recognize five species, with names
assigned based on nomenclatural priority and the
phylogenetic placement of the type specimens: D.
elegans (Lindley) Torrey, D. bacigalupii Weiler,
D. yina Applegate, D. willamettensis Peck, and D.
pulclhierrima Peck. Ideally taxon names, including
species names, should only be assigned to clades
(Mishler and Donoghue 1982; Misher and
Theriot 2000). This strict application of a
phylogenetic species concept only applies full
species status to D. elegans, D. bacigalupii, and D.
yina sensu stricto. Downiugia willamiettensis and
D. pulcherrima comprise the “D. yina” samples
from Clades I and III respectively. These samples
are not resolved as clades, but may still be named
as metaspecies (Donoghue 1985), plesiospecies
(Olmstead 1995) or ferrespecies (Graybeal 1995).
An alternative to recognizing five specics is to
recognize a single specics, D. elegans (based on
nomenclatural priority), and five varictics. While
both alternatives recognize the same taxa, differ-
ing only in the rank applied (species or variety), the
recognition of five species more clearly emphasizes
the molecular, cytological and fertility diversity

within this complex group. In this case, names are
also available at the species rank whereas new

names or combinations would be needed if the
taxa were recognized at the varietal rank.
Features of the five taxa are summarized in
Table 7. It is unfortunate that the three species
previously referred to D. yina (D. yina s.s., D.
willametteusis, and D. pulcherrima) are morpho-
logically indistinguishable given current informa-
tion. Even those features of most importance in
discriminate function analysis (included in Ta-
ble 7) show such overlap as to be of minimal use
for field identification. Weiler (1962) did note

that D. yina tended to be decumbent in the west |

and erect in the east (which would correspond to
D. willamettensis and D. pulcherrima respective-
ly), but this can be difficult to detect on

herbarium sheets. This feature, as well as corolla |

coloration (particularly useful for distinguishing
D. clegans and D. bacigalupii), 1s worth noting in
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. Downingia pulchernma

A Downingia yina

Oregon Ecoregions
/ G Cascades

D Eastern Cascades Slopes and Foothills
D Klamath Mountains

US HWY g7
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Lake of &
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Klamath Falls

Map illustrating the distribution of Downingia vina sensu strictu relative to adjacent D. pulcherrima

populations in the southern Cascade Range of Oregon. The map does not illustrate D. bacigalupii, which is also

found in the pictured region. Triangles = D. yina s.s. (n

10, Clade I1). Circles = D. pulcherrima (n = 12, Clade

I1). Downingia yina s.s. samples are located within the southern tip of the Cascades ecoregion of Oregon (following

Thorson et al. 2003).

future collections. Unless reliable features are
identified, we must rely on geographic location
for field identification, ideally with confirmation
from molecular and/or cytological data. At
present I recommend that specimens collected
west of the Cascades in Oregon and Washington,
and west of the North Coast Ranges in California
are best assigned to D. willamettensis. Specimens
collected east of the Cascades in Oregon or
Washington are best assigned to D. pulcherrima.
Dovwningia pulcherrima is also located in the
Klamath and Siskiyou regions of northern
California (documented in this study as far west
as Coffee Creek, just west of Clair Eagle Lake,
Trinity Co.) and southern Oregon (documented
in this study as far west as Medford, Jackson
Co.). Downingia pulcherrima and D. willametten-
sts are generally above and below clevations of
250 m respectively. Downingia yina sensu strictu 1s
localized to the southern tip of the Cascade
Range in Oregon. This study documents popula-
tions from the northwestern edge of Upper
Klamath Lake to Lake of the Woods (Klamath
Co.). Based on my current understanding of the
distribution for D. yina, I recommend assigning
to this taxon any collections found in the
Cascades ecoregion of southern Oregon (eco-
region as delimited in Thorson et al. 2003), while
assigning those found in neighboring areas
outside of this ecoregion to D. pulcherrini.
Figure 8 provides a map delimiting the distribu-
tion of D. yina relative to D. pulcherrima.

Priorities for refining our current understand-
ing of this species complex include obtaining
molecular data from additional populations
(particularly at the limits of species ranges,
including Washington state) additional sampling
of cytological variation, and exploration of
morphological or ecological features to distin-
guish D. yina sensu strictu, D. willamettensis, and
D. pulcherrima.

Key to Taxa of the Downingia yina
Species Complex

la. Anthers abruptly bent, >70° to filaments;
lower corolla lip lobes *= parallel.
2a. Corolla 3-colored (blue, white, yellow);
lower corolla lobes obtuse, mucronate
........................ D. bacigalupii
2b. Corolla 2-colored (blue, white); lower
corolla lobes acute . ... ........ D. elegans
1b. Anthers not or = bent, <45° to filaments;
lower corolla lip lobes divergent, not parallel.
3a. Plants generally east of Cascades, extend-
ing into Klamath Ranges in southern
Oregon and northern California; generally
>250 m (but <250 m along Columbia
River, Washington).
4a. Localized to southern Oregon Cas-
cades, between northwestern Upper

Klamath Lake and Lake of the
Woods, plants at 1200-1510 m. . . D. yina
4b. East of Cascades, extending into

Klamath Ranges in southern Oregon
and northern California, plants gener-
ally at <2000 m . ....... D. pulcherrima
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3b. Plants generally west of Cascades in Oregon
and Washington, and west of North Coast
Ranges in California; generally <250 m (but
650 m on Snow Mountain, Lake Co.,
California) .. ............. D. willamettensis
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